



|                                         |                                                                                                                                                                                                                                                                                                      | 3 |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| First Order Lag Process                 |                                                                                                                                                                                                                                                                                                      |   |  |  |
| <u>Characterist</u><br><u>Examples:</u> | <ul> <li>ics: 1) Single storage element</li> <li>2) Input produces an output related to amount of storage</li> <li>3) Another name: self-regulating process</li> <li>Series R-C circuit</li> <li>Series R-L circuit</li> <li>Self-regulating tank (valve on output)</li> <li>Tank heating</li> </ul> |   |  |  |
|                                         |                                                                                                                                                                                                                                                                                                      | 1 |  |  |













| 10                                                                                                                                                                                                     |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| lesson19et438a.pptx                                                                                                                                                                                    |  |  |  |  |
| Example 19-1 Solution (4)                                                                                                                                                                              |  |  |  |  |
| For Laminar flow $R_2 = \frac{128  \mu L}{\pi d^4} P_{\alpha} - 5/m^3$ $L = p_1 p_2   e_{ng} + h_{\alpha} = 0.160  p_{\alpha} - 5$                                                                     |  |  |  |  |
| $R_{L} = \frac{128(0.160 \text{ P-s})(5m)}{\pi (2.85 \times 10^{2} \text{ m})^{4}}$                                                                                                                    |  |  |  |  |
| $R_{2} = \frac{102.4}{\pi (6.5975 \times 10^{-7})} = 4.94 \times 10^{-7} Pa - 5/m^{3}$                                                                                                                 |  |  |  |  |
| Now compute the tank time $\gamma = R_L C_L$<br>constant $\gamma = (4.94 \times 10^7 \text{ Hz} - 5/\text{ M}^3)(1.425 \times 10^{-9} \text{ M}^3/\text{Ps})$                                          |  |  |  |  |
| Tank level reduced to 63.2% of<br>initial value after 117.3 minutes with<br>$q_{in}=0.99.2\%$ empty after 57. $M = 7040 \text{ s}$ $III7.3 \text{ min}$ $\gamma = 7040 \text{ s}$ $II77.3 \text{ min}$ |  |  |  |  |





|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 |  |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|                                                                 | lesson19et438a.pptx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |  |
| Step Response and Bode Plots of The First-<br>Order Lag Process |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |
| MatLAB Code                                                     | <pre>% close all previous figures and clear all variables<br/>close all;<br/>clear all;<br/>% input the integral time constant<br/>Tl=input('enter the process time constant: ');<br/>G=input('enter the gain of the process: ');<br/>% construct and display the system<br/>sys=tf(G,[Tl 1]);<br/>sys<br/>% plot the frequency response<br/>bode(sys);<br/>% construct a new figure and plot the time response<br/>figure;<br/>% define a range of time<br/>t=(0:500:5*Tl);<br/>% use it to generate a step response plot<br/>step(sys,t);</pre> |    |  |

















|                                                                                                                     | 22                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                     | lesson19et438a.pptx                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Dead-Time Process                                                                                                   |                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Characteristic: Energy or mass transported over a distance<br>Common in process industries (Chemicals Refining etc) |                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Time domain equation:<br>$f_o(t) = f_i(t - t_d)$ $t_d = \frac{D}{v}$                                                | - t <sub>d</sub> )                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| <b>Transfer function:</b> $\frac{F_o(s)}{F_i(s)} = e^{-t_d \cdot s}$                                                | Where:<br>$f_o(t) = output function$<br>$f_i(t) = input function$<br>v = velocity of response travel<br>(m/sec)<br>D = distance from input to output<br>$t_d = dead$ -time lag (sec or minutes)<br>$F_o(s) = Laplace transform of output$<br>$F_i(s) = Laplace transform of input$ |  |  |  |  |  |









